Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants # Custom Soil Resource Report for Gillespie County, Texas # **Preface** Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment. Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations. Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951). Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations. The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey. Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. # **Contents** | Preface | 2 | |------------------------------------------------------------|----| | Soil Map | | | Soil Map | | | Legend | | | Map Unit Legend | | | Map Unit Descriptions | | | Gillespie County, Texas | | | Gr—Boerne and Oakalla soils, channeled, frequently flooded | | | He—Heaton loamy fine sand | 11 | | HnD—Hensley loam, 3 to 8 percent slopes | | | HsB—Hensley soils, 1 to 3 percent slopes | | | LuB—Luckenbach clay loam, 0 to 3 percent slopes | | | PeB—Pedernales fine sandy loam, 1 to 3 percent slopes | 15 | | PeC—Pedernales fine sandy loam, 3 to 5 percent slopes | | | References | | # Soil Map The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit. #### MAP LEGEND #### Area of Interest (AOI) Area of Interest (AOI) #### Soils Soil Map Unit Polygons - Soil Map Unit Lines Soil Map Unit Points #### **Special Point Features** (0) Blowout \boxtimes Borrow Pit Clay Spot **Ж** Closed Depression × Gravel Pit ... Gravelly Spot 0 Landfill Lava Flow علد Marsh or swamp @ Mine or Quarry 20 Miscellaneous Water 0 Perennial Water \vee Rock Outcrop + Saline Spot Sandy Spot ... Severely Eroded Spot Sinkhole 3⊳ Slide or Slip Sodic Spot 8 Spoil Area Stony Spot m Very Stony Spot 7 Wet Spot △ Other ** Special Line Features #### Water Features Streams and Canals #### Transportation +++ Rails Interstate Highways US Routes Major Roads ~ Local Roads #### Background 100 Aerial Photography #### MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:20,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Gillespie County, Texas Survey Area Data: Version 10, Sep 21, 2015 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Feb 6, 2011—Apr 18, 2011 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. ## Map Unit Legend | Gillespie County, Texas (TX171) | | | | |---------------------------------|---------------------------------------------------------|--------------|----------------| | Map Unit Symbol | Map Unit Name | Acres in AOI | Percent of AOI | | Gr | Boerne and Oakalla soils, channeled, frequently flooded | 0.1 | 0.1% | | He | Heaton loamy fine sand | 83.7 | 58.1% | | HnD | Hensley loam, 3 to 8 percent slopes | 49.2 | 34.2% | | HsB | Hensley soils, 1 to 3 percent slopes | 4.5 | 3.1% | | LuB | Luckenbach clay loam, 0 to 3 percent slopes | 0.8 | 0.5% | | PeB | Pedernales fine sandy loam, 1 to 3 percent slopes | 0.4 | 0.3% | | PeC | Pedernales fine sandy loam, 3 to 5 percent slopes | 5.4 | 3.8% | | Totals for Area of Interest | | 144.0 | 100.0% | # **Map Unit Descriptions** The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit. A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils. Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas. An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities. Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series. Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups. A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example. An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example. An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example. Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example. ### Gillespie County, Texas #### Gr—Boerne and Oakalla soils, channeled, frequently flooded #### **Map Unit Setting** National map unit symbol: d91k Elevation: 600 to 2,300 feet Mean annual precipitation: 24 to 36 inches Mean annual air temperature: 64 to 70 degrees F Frost-free period: 210 to 255 days Farmland classification: Not prime farmland #### **Map Unit Composition** Boerne and similar soils: 60 percent Oakalla, pe <44, and similar soils: 39 percent Minor components: 1 percent Estimates are based on observations, descriptions, and transects of the mapunit. #### **Description of Boerne** #### Setting Landform: Flood plains, stream terraces Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Linear Parent material: Alluvium derived from limestone #### Typical profile H1 - 0 to 19 inches: loam H2 - 19 to 49 inches: loam H3 - 49 to 60 inches: fine sandy loam #### **Properties and qualities** Slope: 0 to 5 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr) Depth to water table: More than 80 inches Frequency of flooding: Frequent Frequency of ponding: None Calcium carbonate, maximum in profile: 75 percent Available water storage in profile: Moderate (about 7.8 inches) #### Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: A Ecological site: Loamy Bottomland 23-31" PZ (R081BY335TX) #### Description of Oakalla, Pe <44 #### Setting Landform: Flood plains, flood plains Down-slope shape: Linear Across-slope shape: Concave Parent material: Alluvium derived from limestone #### Typical profile H1 - 0 to 26 inches: silty clay loam H2 - 26 to 51 inches: silty clay loam H3 - 51 to 60 inches: silty clay loam #### **Properties and qualities** Slope: 0 to 2 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: More than 80 inches Frequency of flooding: Frequent Frequency of ponding: None Calcium carbonate, maximum in profile: 60 percent Available water storage in profile: High (about 9.4 inches) #### Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: B Ecological site: Loamy Bottomland 23-31" PZ (R081BY335TX) #### **Minor Components** #### Unnamed, hydric Percent of map unit: 1 percent Landform: Sloughs #### He—Heaton loamy fine sand #### **Map Unit Setting** National map unit symbol: d91n Elevation: 1,400 to 2,100 feet Mean annual precipitation: 26 to 32 inches Mean annual air temperature: 64 to 68 degrees F Frost-free period: 210 to 270 days Farmland classification: Farmland of statewide importance, if irrigated #### **Map Unit Composition** Heaton and similar soils: 100 percent Estimates are based on observations, descriptions, and transects of the mapunit. #### **Description of Heaton** #### Setting Landform: Stream terraces Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Linear Parent material: Mixed sources alluvium **Typical profile** H1 - 0 to 28 inches: loamy fine sand H2 - 28 to 67 inches: sandy clay loam H3 - 67 to 90 inches: sandy clay loam #### **Properties and qualities** Slope: 1 to 5 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water storage in profile: Moderate (about 6.4 inches) #### Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: Sandy 25-32" PZ (R082AY372TX) #### HnD—Hensley loam, 3 to 8 percent slopes #### **Map Unit Setting** National map unit symbol: d91p Elevation: 350 to 2,250 feet Mean annual precipitation: 24 to 40 inches Mean annual air temperature: 64 to 66 degrees F Frost-free period: 210 to 250 days Farmland classification: Not prime farmland #### **Map Unit Composition** Hensley and similar soils: 100 percent Estimates are based on observations, descriptions, and transects of the mapunit. #### **Description of Hensley** #### Setting Landform: Plains Down-slope shape: Convex Across-slope shape: Linear Parent material: Residuum weathered from limestone #### Typical profile H1 - 0 to 4 inches: loam H2 - 4 to 18 inches: clay H3 - 18 to 21 inches: bedrock #### **Properties and qualities** Slope: 3 to 8 percent Depth to restrictive feature: 10 to 20 inches to lithic bedrock Natural drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water storage in profile: Very low (about 2.9 inches) #### Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: D Ecological site: Redland 23-31" PZ (R081BY340TX) #### HsB—Hensley soils, 1 to 3 percent slopes #### **Map Unit Setting** National map unit symbol: d91q Elevation: 350 to 2,250 feet Mean annual precipitation: 24 to 40 inches Mean annual air temperature: 64 to 66 degrees F Frost-free period: 210 to 250 days Farmland classification: Not prime farmland #### **Map Unit Composition** Hensley and similar soils: 100 percent Estimates are based on observations, descriptions, and transects of the mapunit. #### **Description of Hensley** #### Setting Landform: Plains Down-slope shape: Convex Across-slope shape: Linear Parent material: Residuum weathered from limestone #### Typical profile H1 - 0 to 4 inches: loam H2 - 4 to 18 inches: clay H3 - 18 to 21 inches: bedrock #### **Properties and qualities** Slope: 1 to 3 percent Depth to restrictive feature: 10 to 20 inches to lithic bedrock Natural drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water storage in profile: Very low (about 2.9 inches) #### Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4s Hydrologic Soil Group: D Ecological site: Redland 23-31" PZ (R081BY340TX) #### LuB—Luckenbach clay loam, 0 to 3 percent slopes #### **Map Unit Setting** National map unit symbol: 2t0rl Elevation: 1,000 to 1,900 feet Mean annual precipitation: 28 to 32 inches Mean annual air temperature: 65 to 67 degrees F Frost-free period: 215 to 240 days Farmland classification: All areas are prime farmland #### **Map Unit Composition** Luckenbach and similar soils: 92 percent Minor components: 8 percent Estimates are based on observations, descriptions, and transects of the mapunit. #### **Description of Luckenbach** #### Setting Landform: Stream terraces, hillslopes Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope, tread Down-slope shape: Linear, convex Across-slope shape: Linear Parent material: Calcareous loamy and clayey alluvium derived from limestone #### Typical profile Ap - 0 to 18 inches: clay loam Bt - 18 to 30 inches: clay Btk - 30 to 38 inches: clay Bk - 38 to 80 inches: clay loam #### **Properties and qualities** Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: High Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.57 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum in profile: 50 percent Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum in profile: 2.0 Available water storage in profile: Moderate (about 7.9 inches) #### Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C Ecological site: Clay Loam 23-31" PZ (R081BY326TX) #### **Minor Components** #### **Pedernales** Percent of map unit: 4 percent Landform: Hillslopes Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Convex Ecological site: Tight Sandy Loam 25-32" PZ (R082AY378TX) #### Hensley Percent of map unit: 3 percent Landform: Hillslopes Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Convex Ecological site: Redland 23-31" PZ (R081BY340TX) #### Nuvalde Percent of map unit: 1 percent Landform: Stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Ecological site: Clay Loam 23-31" PZ (R081BY326TX) #### PeB—Pedernales fine sandy loam, 1 to 3 percent slopes #### **Map Unit Setting** National map unit symbol: 2t2m7 Elevation: 670 to 2,000 feet Mean annual precipitation: 26 to 32 inches Mean annual air temperature: 65 to 67 degrees F Frost-free period: 220 to 240 days Farmland classification: All areas are prime farmland #### **Map Unit Composition** Pedernales and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit. #### **Description of Pedernales** #### Setting Landform: Hillslopes Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Calcareous loamy slope alluvium over residuum weathered from sandstone #### Typical profile Ap - 0 to 11 inches: fine sandy loam Bt - 11 to 37 inches: sandy clay Btk - 37 to 43 inches: sandy clay loam BCtk - 43 to 80 inches: sandy clay loam #### Properties and qualities Slope: 1 to 3 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Medium Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.57 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum in profile: 35 percent Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum in profile: 2.0 Available water storage in profile: Moderate (about 8.8 inches) #### Interpretive groups Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 2e Hydrologic Soil Group: C Ecological site: Tight Sandy Loam 25-32" PZ (R082AY378TX) #### **Minor Components** #### Hye Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Convex Across-slope shape: Convex Ecological site: Red Sandy Loam 25-32" PZ (R082AY369TX) #### Luckenbach Percent of map unit: 3 percent Landform: Stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Ecological site: Clay Loam 23-31" PZ (R081BY326TX) #### Hensley Percent of map unit: 2 percent Landform: Hillslopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Ecological site: Redland 23-31" PZ (R081BY340TX) #### PeC—Pedernales fine sandy loam, 3 to 5 percent slopes #### **Map Unit Setting** National map unit symbol: 2t2mc Elevation: 670 to 2,000 feet Mean annual precipitation: 26 to 32 inches Mean annual air temperature: 65 to 67 degrees F Frost-free period: 220 to 240 days Farmland classification: All areas are prime farmland #### **Map Unit Composition** Pedernales and similar soils: 91 percent Minor components: 9 percent Estimates are based on observations, descriptions, and transects of the mapunit. #### **Description of Pedernales** #### Setting Landform: Hillslopes Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Calcareous loamy slope alluvium over residuum weathered from sandstone #### Typical profile Ap - 0 to 11 inches: fine sandy loam Bt - 11 to 37 inches: sandy clay Btk - 37 to 43 inches: sandy clay loam BCtk - 43 to 80 inches: sandy clay loam #### **Properties and qualities** Slope: 3 to 5 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Medium Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.57 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum in profile: 35 percent Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum in profile: 2.0 Available water storage in profile: Moderate (about 8.8 inches) #### Interpretive groups Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C Ecological site: Tight Sandy Loam 25-32" PZ (R082AY378TX) #### **Minor Components** #### Hensley Percent of map unit: 3 percent Landform: Hillslopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Ecological site: Redland 23-31" PZ (R081BY340TX) #### Hye Percent of map unit: 3 percent Landform: Hillslopes Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Convex Across-slope shape: Convex Ecological site: Red Sandy Loam 25-32" PZ (R082AY369TX) #### Luckenbach Percent of map unit: 2 percent Landform: Stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Ecological site: Clay Loam 23-31" PZ (R081BY326TX) #### **Doss** Percent of map unit: 1 percent Landform: Hillslopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: Shallow 29-35" PZ (R081CY574TX) # References American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition. American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00. Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31. Federal Register. July 13, 1994. Changes in hydric soils of the United States. Federal Register. September 18, 2002. Hydric soils of the United States. Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States. National Research Council. 1995. Wetlands: Characteristics and boundaries. Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262 Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577 Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580 Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section. United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1. United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374 United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084 United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2 054242 United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624 United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf